Code: 20BS1403

II B.Tech - II Semester - Regular Examinations - JULY 2022

FORMAL LANGUAGES AND AUTOMATA THEORY (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Max. Marks: 70 Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions. 2. All parts of Question must be answered in one place. UNIT – I a) Define Automata. Describe the model of a discrete 1. 7 M automaton. b) Differentiate the NFA and DFA. 7 M OR 2. a) Construct a DFA which is accepted any string contains even number of 0's and even number of 1's. Explain with a neat transition diagram & transition table. 7 M b) Differentiate the Mealy and Moore machines. 7 M UNIT – II a) Define a language. Discuss the properties of regular 3. 7 M language. b) Construct a grammar accepting $L = \{w \in \{a, b\}^* \text{ the number of a's in } w \text{ is divisible by } \}$ 3}. 7 M

OR

4. a) How to convert the DFA to regular expression with example?

7 M

	b)	Construct a grammar G accepting all strings over {a, b} containing an unequal number of a's and b's.	7 M
		UNIT-III	
5.	a)	Show that the set of all non-palindromes over $\{a, b\}$ is a	
	ω	context-free language.	7 M
	b)	Consider the following grammar G	
	- /	$S \rightarrow SbS \mid a$	
		Show that G is ambiguous or not.	7 M
		OR	
6.	a)	Construct a grammar in Chomsky normal form	
		equivalent to given grammar.	
		S → aAbB	
		$A \rightarrow aA a$	
		$B \rightarrow bB \mid b$	7 M
	b)	Show that $L = \{a^p \mid p \text{ is a prime}\}\ \text{is not Context-free.}$	7 M
		TINITE TY	
7	a)	Explain the model of a pushdown automaton with a	
7.	a)	neat diagram.	7 M
	h)	Construct a PDA accepting the set of all strings over	/ 1/1
	U)	{0, 1} with equal number of 0's and 1's.	7 M
		OR	, 141
8.	a)	Convert the following grammar to a equivalent PDA	
		that accepts the same language by empty stack.	
		$S \rightarrow aSb \mid A$	
		$A \rightarrow bSa \mid S \mid A$	7 M
	b)	Explain the Deterministic PDA with example.	7 M
		$\overline{\mathbf{UNIT} - \mathbf{V}}$	

Page 2 of 3

9. a) Discuss the following representations for Turing machine. By instantaneous descriptions By transition table ii. By transition diagram 7 M iii. b) Demonstrate various programming techniques for Turing machine. 7 M OR multitape Turing machine with a neat 10. a) Illustrate diagram. 7 M b) What is Halting problem? Discuss post correspondence problem with example. 7 M